
White Paper

Network Software Stack
AimOS

Network Software Stack - AimOS
White Paper

Table of Contents
1. Introduction...3
2. In a nut shell..4
3. Architecture...5

3.1 Predictability...5
3.2 Prioritization...5
3.3 Efficiency..5
3.4 Portability..5

4. Design.. 6
4.1 Configuration Management..6
4.2 Infrastructure...7
4.3 Hardware Abstraction..9
4.4 Protocol Stacks...9
4.5 Service Integration...9
4.6 SDK/Build Environment..10

5. Joint Development..11
6. Source Lines of Code...12
7. Why AimValley?...13
8. Further information...13

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

1. Introduction
AimValley is a company that has its roots in the telecommunication industry where reliability and
availability of service is a major requirement. The systems built are required to provide an uninterrupted
service for 15 years or more, including maintenance and upgrade windows with zero down time.
Zero down time requires reliable software that does not break. However, robustness in software alone
does not bring zero down time, it requires a system architecture that supports that goal.

AimValley OS includes support for the following concepts which are often used in high availability system
architectures:

Dual image support that allows for a secure upgrade of the software.
• A secure upgrade entails that after a software upgrade the system is never isolated, bricked or

otherwise unmanageable. A secure upgrade requires hardware facilities and software that support
active, standby, soak and auto fallback procedures during the installation of new software.

• Dual image support and a solid update process, solves only half of the problem.
The configuration database needs to be run-time upgraded to be compatible with the new
functionalities in the next release. Besides this, if the system falls-back to the old release
(manually forced or automatically), the old database needs to be restored without any service
interruption when the old software load is started.

The above described dual image support, does not work unless the system is capable of rebooting
the software without service interruption. This entails that the software needs to inspect the current
hardware and ASICs’ settings cautiously, before writing to any registers that will cause a service
interruption. It also means that relevant protocol states need to be saved before any spontaneous or
intended reboot of the system, to prevent any unwanted network reconfiguration that can cause a
service interruption.
Independent control and protocol plane protection.
• Every control and data plane task is independently, redundantly executed in an active and

protective state. The protecting task is in the same state and has the same configuration as the
active task, so that it can presume control without a glitch. Note that a fully protected system
requires hardware that supports communication paths to both controllers from the controlled units
or systems.

Dynamic hardware configuration management.
• Configuration of the hardware and modification of the hardware configuration, (adding and

removing cards) can be done live, without impacting the running services.
Software package handling.
• The software is provided in one single package, including boot, file system, kernel, drivers and

applications to secure that the combination works in perfect harmony. Even in systems that consist
of many units, including chassis with multiple cards, the software load is delivered in
one package.

• Add signature info to guarantee the right software is loaded.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

Apart from concrete system architecture, the software needs to be of high quality and should be
capable of running over years without problem. This requires a long and expensive development
process with many iterations of architecture discussions, design reviews, implementations and
test/verification steps to build such a system. This lengthy process can be accelerated by using a
platform that enforces proven concepts and patterns, that provides the right tooling. The right platform
supports developers in their day-to-day work, by reducing labor intensive and repetitive tasks, thereby￹
allowing them to focus on functionalities that make the product standout.

At AimValley, we have been using AimOS for many years and have improved and complemented the
platform at each development cycle, up to a point where we can repeatedly deliver high quality systems
with a proven low field return rate, ranging from very small and relatively simple systems to very large
and complex ones. The key to this success is a strong architecture, flexible configuration management
components, modular protocol and services support, a portable and efficient infrastructure, a hardware
abstraction layer and build environment which eases the development process.

2. In a nut shell
AimOS is a collection of software assets and tools to develop portable, extendable and highly reliable
embedded systems.

Portable through a hardware and operating system abstraction layer.
Extendable through formal defined interfaces that enable integration of off-the-shelf components
and third party software.
Reliable through platform enforced design patterns, the use of Design Specific Languages and code
generation tools, static and dynamic code analyzers, automated tests and a strong process driven
traceable development process.

AimOS is the development platform that AimValley uses to develop its own products.
It is a field proven platform with a first solution deployment in 2003 and has been used in over
100 000 systems. It is constantly being innovated and improved on, at every development cycle.

The key difference with similar platforms is that AimOS was not build as a product, but specifically
developed as a platform to build products with.

AimValley delivers AimOS as a customized product development environment and it is designed for and
verified on the customer hardware which ultimately results in a better fit and better performance.
Enhancements, updates and bug fixes are delivered to the customer's platform and not in a generic
new release that needs additional adaptation to the customer's product.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

3. Architecture
The objective of the architecture is to provide a platform that produces consistently and largely
independently of the developer, an application that is predictable, has prioritized behavior, is efficient in
resource usage, is highly portable and has a formalized interface to support third party applications.

3.1 Predictability
Predictability or deterministic behavior is achieved by minimizing dynamic resource allocation as much
as possible. AimOS organizes the tasks, message definitions and system resource allocations from a
central place. The advantage of this approach is, that the messages sent or received are defined
beforehand which allows accurate scaling of the buffer pools and it supports the automatic generation
of the message handling routines during build time. The latter also reduces the chance of out-of-sync
message definitions and handling routines in sender and receiver tasks.

3.2 Prioritization
Predictability and prioritized behavior is further enforced by defining the tasks, task resources and
priority settings in a centralized location. The benefits are twofold, it provides a clear overview of all the
tasks and priorities in a system and secondly, message routing can be defined at compile time.
Task priority is further enforced as message routing and delivery is done in the context of the sending
task, ensuring the right priority even during message routing.

3.3 Efficiency
Being efficient in using the available resources in an embedded system is key for the success of a
product. AimOS uses a smart buffer concept that prevents memory thrashing and unnecessary copying
of data between tasks. For instance, messages that are sent inside the same instance of AimOS, are not
copied but result in mere exchange of ownership of the involved buffer.

3.4 Portability
The AimOS infrastructure provides a hardware and operating system abstraction layer for any real-time
application. The hardware abstraction layer focuses on the controller related assets and the ASICs that
are being used.

The first, controller infrastructure abstraction, provides an interface for most operating system
dependent functions and relies on the POSIX compliance of the underlying operating system.
AimOS has been ported and tested on many POSIX compliant operating systems such as Linux, Solaris,
Chorus and OSE. The controller infrastructure component provides tasks, messages, timers,
semaphores, message routing facilities and other functions for the application.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

The second, ASIC abstraction, is divided in two parts. A generated low level driver that is ASIC dependent
and a high level driver that provides a stable and ASIC independent interface to the rest of the application.
The low level driver is generated from a manually created register map. The register map description is
also used at AimValley to generate register descriptions that are used during FPGA or ASIC design. This
approach reduces the chance of inconsistencies between the register definitions and the driver and at the
same time reduces the driver development effort when there is a small change in register layout. Only the
low level driver needs to be regenerated from the new register map definition.

4. Design
AimOS captures the characteristics described in
paragraph 3, in a few high level building blocks.

1. Configuration Management
2. Infrastructure
3. Hardware Abstraction
4. Protocol Stack
5. Service Integration
6. Build environment

4.1 Configuration Management
AimOS provides its service to the user by means of the AimValley Logical Interface (ALI). The ALI
provides an ASCII oriented interface for the management agents. The interface supports a set of
commands as defined in the ALI XML based model. The ALI model is used to generate the database
model and the interface handling routines. ALI commands given by the management agents are first
subjected to syntax checks. ALI takes care of the inter-process communication by means of Linux socket
communication.

The configuration manager is the central point where ALI commands are interpreted and handled.
The configuration settings are maintained in a database with access restricted to the configuration
manager. Configuration commands from the management agents are subjected to validations (semantic
checks) and passed further into the system. The configuration manager can perform checks/validations
with the current status to verify the consistency of the provisioning. From the ALI model, hook-functions
are generated as a template to implement the semantic validations.

Fault Management System
This system correlates the events or defects from the entire system to deduct the correct alarm
condition. This condition is stabilized over a configurable integration period before reporting this to
the user application or using this in any other way within AimOS. The contribution of defects to a
specific alarm is described in terms of logical expressions. Per alarm the user application can
provision the alarm to be reported. History alarms, event logs and other logs are stored in the
database and can be retrieved by the management agents.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

4.2 Infrastructure
The AimOS uses the POSIX interface definition that is present in most modern operating systems to
claim portability across operating systems. The infrastructure provides a common interface to normal
operating system functions that glues tasks, timers, buffers, messages, etc. together into an efficient
framework. The framework also provides customization for those operating systems that do not
support the POSIX standard fully, which makes AimOS portable across many operating systems.

Messages
AimOS provides a platform supporting efficient message based concepts with generalized functions
for easy portability. The individual components provide their services in a multi-task environment and
interact by means of messages and signals. Tasks within AimOS are blocked until a message request
for a certain action is received. On a single board system AimOS is normally embedded within one
process and the tasks run in a shared memory space and data is not copied when a message is
exchanged between components. When AimOS is running in a distributed mode that requires
multiple instances of AimOS running on multiple cards or virtual environments, the messages and
data are copied when routed to remote instances.

Tasks
The infrastructure layer supports the concept of static and dynamic tasks. The former ones are
created during startup and never deleted, the latter ones are created or deleted at run-time. When a
new task is created, it is automatically provided with a message queue and the message router is
informed about the task’s existence to make the task reachable from other tasks.

Configuration messages are often send to multiple tasks that require the same information.
AimOS utilizes a message broker for this purpose, where a task can be registered as a recipient of a
specific message. When the originator sends the message, the broker will distribute the messages to all
the registered recipients. This concept allows the originator of a message to send it without any
knowledge about the recipient.

In a system which contains slots for multiple cards, newly inserted cards are often initialized to a non-
operating mode where very few tasks are initialized and running. The AimOS routing system provides
pre-delivery hooks per task that are called upon before messages and signals are put in a task’s
message queue. These hooks can be used to various purposes which includes the ability to create and
start a task when it is not running by simply sending a message to the non existing task.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

Debug Facilities
The debug facilities that a platform provides, can
have a huge impact on the development time and
turn around time of customer tickets. AimOS has a
dedicated debug environment similar to a
command line interface, which provides access to
the internal data structures and functions. The
debug environment includes a prioritized trace
and log facility and a task queue monitoring
facility. The latter sends queue utilization reports
to a remote system that stores the accumulated
data from all tasks in a database for later
evaluation. This helps when profiling the
application and spotting bottlenecks and priority
issues.
Debug commands are organized in debug objects that are stored in a directory-like structure, similar
to the files in a file system. Debug objects are accessible via an interpreter that processes the user
input, locates the object in the directory tree and executes the command. The interpreter uses
connectors that are bound to a particular IO service (console, sockets, telnet etc). The connectors
and the physical implementation of the connectors are participating in a so called Bridge design
pattern that makes it possible to run-time switch connectors and IO-devices.

Scalability
The configuration management, infrastructure and message architecture makes AimOS not only
easily scalable for the use in single board systems, but also applicable to single chassis and multi-
chassis systems (of which each chassis can be located at different physical locations).
We have successfully built very small single board systems and large scale management solutions for
up to 1000 units.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

4.3 Hardware Abstraction
Hardware abstraction is divided into two major parts in AimOS; controller abstraction and ASIC
abstraction.

The first part focuses on the controller asset IO devices such as GPIO and I2C interfaces. Devices
connected to these interfaces share a common interface definition and it is worthwhile to use a
framework that provides all the possible functions and not have those sloppy copies for every IO
device.
The second part focuses on ASIC abstraction. Many ASIC suppliers provide either an Sofware
Development Kit (SDK) or library to access the ASIC that needs to be integrated into the application
or they provide a register map (and any variant in between).

AimOS handles the first type of ASIC interface via a high level driver interface, where the ASIC model is
isolated and translated into the internal model, ensuring that the application is truly agnostic of the
ASIC used. In the second option, the register map is accessed via a low level driver (that can be
generated from the provided register map) and the aforementioned high level driver. Only the high level
drivers need to be coded/implemented manually since they are not auto-generated.

4.4 Protocol Stacks
AimOS was originally designed for managing various connectivity products. It was used for SDH,
Ethernet, SONET, ATM, OTN and CPRI based systems and for each type of system various protocol
stacks are supported.

Protocol implementations are Operating System and ASIC agnostic and utilize only the internal AimOS
data model. The hardware abstraction layer shields the hardware specifics from the protocol
implementations.

4.5 Service Integration
There are several degrees of integration in which Linux services can be included into AimOS.
Ranging from a full integration that includes the integration of the service data model into the AimOS
internal data model, to a light integration where the service configuration data is maintained outside
AimOS and only a limited set of provisionable data and functions are accessible and under control of
AimOS.

Protocol packet trapping or event handling can be integrated similar to the configuration data.
Where the data can be handed-off early to the Operating Service or handled/processed internally by
AimOS. The framework supports both and any hybrid form that is required.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

4.6 SDK/Build Environment
The build environment runs in a Linux environment and makes use of makepp as an automated build
utility. The build tool is menu driven and produces all the required images, libraries and other
components of the final product. The principle behind AimValley’s build environment is that the
complete product can be recreated from the sources/components and that the result is the same every
time, except for the data and time stamp of the build. This guarantees that at any given moment in time
we can debug and fix issues on any delivered product.

The result of the build process is typically a catalog image that contains all the resources required for
the embedded system such as a boot, kernel, file system and various applications. Note that on a
distributed system, the system catalog includes a catalog per unit type. The unit catalog is sent to the
remote unit during an upgrade.

The build environment allows AimValley to build a specific set of (sub)products for various customers
from the same source tree and at the same time separating the customer specific sources from each
other. The same principle is used to include AimValley’s common assets into a new build. These assets
are not stored in the platform source tree but retrieved during compile time, based upon a label directly
from the asset storage. The build environment can also extract the sources and build for a specific
customer. This allows us to easily distribute a source package to different customers.

The build environment also provides several host and simulation images. These host and simulation
images are often used during the development phase because the host is more accessible than an
embedded system and more resources and tools are available on the development platform than on
an embedded system. This has shown to be very powerful in the past where hardware was often
available late in the development process and allowed us to prepare and verify most of the software
before any hardware was available. Depending on the application hybrid, setups are possible where
simulated units and embedded units are used in the same setup. This is extremely useful for instance
during protocol development or during large scale integration testing because we can simulate a large
number of units and mix them with real embedded units.

Last but not least the build environment includes the automated build server “Jenkins” to take care of
continuous static code analysis runs, regression suite runs and build actions when a new branch of
code is pushed for review in Gerrit.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

5. Joint Development
The build environment also enables a joint development process with our customers if they desire to do
so. At AimValley we use Gerrit as a version control and peer review system which allows our customers
to really participate in the development process. In order to further accommodate our customers we
have a documentation set that describes how to use, modify and extend the environment.

There is also a 3-day workshop for customers, aimed towards knowledge transition which eases the
development process.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

6. Source Lines of Code

To give an idea of the size of the framework
SLOCcount is run on the repository.
The AimOS framework, without Operating
System and no application, reports around
160 000 lines of code.

The same skeleton AimOS framework
built into an executable, reports
around 240 000 lines of code. The
difference is because of the generated
interfaces, components, database
models, state machines and common
asset that are included.

The AimOS Ethernet application gives an idea
of the size of a single board L2/L3 Ethernet
application. Note that the AimOS Ethernet
repository does not include an Operating
System or file system.
SLOCcount reports around 1,1 million lines of
code before building.

After building AimOS Ethernet
SLOCcount, reports around
1,2 million lines of code.

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

Total Physical Source Lines of Code (SLOC) = 160,598
Development Effort Estimate, Person-Years (Person-Months) = 41.41 (496.86)
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 2.20 (26.46)
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 18.78
Total Estimated Cost to Develop = $ 5,593,308
 (average salary = $56,286/year, overhead = 2.40).
SLOCcount, Copyright (C) 2001-2004 David A. Wheeler
SLOCcount is Open Source Software/Free Software, licensed under the GNU GPL.
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL license;
see the documentation for details.
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

Total Physical Source Lines of Code (SLOC) = 237,720
Development Effort Estimate, Person-Years (Person-Months) = 62.50 (750.03)
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 2.58 (30.94)
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 24.24
Total Estimated Cost to Develop = $ 8,443,269
 (average salary = $56,286/year, overhead = 2.40).
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL license;
see the documentation for details.
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

Total Physical Source Lines of Code (SLOC) = 1,128,244
Development Effort Estimate, Person-Years (Person-Months) = 320.67 (3,847.99)
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 4.80 (57.59)
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 66.82
Total Estimated Cost to Develop = $ 43,317,642
 (average salary = $56,286/year, overhead = 2.40).
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL license;
see the documentation for details.
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

Total Physical Source Lines of Code (SLOC) = 1,238,817
Development Effort Estimate, Person-Years (Person-Months) = 353.74 (4,244.91)
 (Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))
Schedule Estimate, Years (Months) = 4.98 (59.78)
 (Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 71.01
Total Estimated Cost to Develop = $ 47,785,830
 (average salary = $56,286/year, overhead = 2.40).
SLOCCount, Copyright (C) 2001-2004 David A. Wheeler
SLOCCount is Open Source Software/Free Software, licensed under the GNU GPL.
SLOCCount comes with ABSOLUTELY NO WARRANTY, and you are welcome to
redistribute it under certain conditions as specified by the GNU GPL license;
see the documentation for details.
Please credit this data as "generated using David A. Wheeler's 'SLOCCount'."

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

Network Software Stack - AimOS
White Paper

7. Why AimValley?
Based on years of experience in developing telecom and datacom systems, AimValley helps you with
your development based on AimOS. This collection of software assets and tools can be used for any
type of carrier-grade switch. AimOS supports for example; Broadcom, NXP and Marvell switches.
Services range from consultancy during your architecture phase, porting AimOS to your own hardware,
designing your hardware, up to a full system development cycle including production, maintenance &
support.

AimValley is a reliable provider of Embedded Software technology since 2003, delivering solutions for:
High speed data processing applications
Complex FPGA-based accelerated systems
High speed, low power hardware equipment
Robust embedded software
Early adopter of Acceleration Technology

We understand the full complexities as well as the subtle nuances of designing great edge solutions. We
excel in building complex systems that are part of your product in the fields of Industry 4.0, Big Data,
Healthcare and Transportation markets. Our combined skills represent all the important aspects required
for the development of end-to-end systems.

Our customers enjoy the benefits of working with a strong team with over 2000 years engineering
experience. AimValley is a trusted partner of Tier 1 customers in Telecom and Industrial markets and has
shipped more than 100 000 products.

Quality Focus
Outstanding track record of on-time delivery
Best in Class Designs – Time, Budget & Quality
ISO9001, ISO140001, EcoVadis Platinum CSR

We take care of every step in your development process,
either based on your requirements or as a joint development project.

8. Further information
Our experienced engineering team with expertise in systems engineering, software, hardware and FPGA
design can support you with all steps in your product development. The Broadcom® experience of our teams
is well known in the industry. For further information contact sales@aimvalley.com

Delivering Solutions for a Connected World
Utrechtseweg 38
1213 TV Hilversum
The Netherlands

phone +31 35 689 1900
sales@aimvalley.com
www.aimvalley.com

mailto:sales@aimvalley.com
mailto:sales@aimvalley.com
mailto:sales@aimvalley.com

	1. Introduction
	2. In a nut shell
	3. Architecture
	3.1 Predictability
	3.2 Prioritization
	3.3 Efficiency
	3.4 Portability

	4. Design
	4.1 Configuration Management
	4.2 Infrastructure
	4.3 Hardware Abstraction
	4.4 Protocol Stacks
	4.5 Service Integration
	4.6 SDK/Build Environment

	5. Joint Development
	6. Source Lines of Code
	7. Why AimValley?
	8. Further information

